Pairs of Rank and Kernel Dimension for $\mathbb{Z}_2\mathbb{Z}_4$ -linear Codes

C. Fernández-Córdoba Universitat Autònoma de Barcelona cristina.fernandez@autonoma.edu

(joint work with J. Pujol and M. Villanueva)

Let \mathcal{C} be a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code, which is a subgroup of $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$. The code \mathcal{C} is isomorphic to $\mathbb{Z}_2^{\gamma} \times \mathbb{Z}_4^{\delta}$. Let \mathcal{C}_b be the subcode of \mathcal{C} which contains all order two codewords and κ the dimension of the punctured code of \mathcal{C}_b by deleting the \mathbb{Z}_4 coordinates. The $\mathbb{Z}_2\mathbb{Z}_4$ -additive code \mathcal{C} is of type $(\alpha, \beta; \gamma, \delta; \kappa)$, the length is $\alpha + \beta$ and the number of codewords is $2^{\gamma+2\delta}$.

We will take an extension $\Phi: \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta} \longrightarrow \mathbb{Z}_2^n$, for $n = \alpha + 2\beta$, of the usual Gray map, $\phi: \mathbb{Z}_4 \longrightarrow \mathbb{Z}_2^2$ where $\phi(0) = (0,0)$, $\phi(1) = (0,1)$, $\phi(2) = (1,1)$ and $\phi(3) = (1,0)$, given by $\Phi(x,y) = (x,\phi(y_1),\ldots,\phi(y_\beta))$, for any $x \in \mathbb{Z}_2^{\alpha}$ and any $y = (y_1,\ldots,y_\beta) \in \mathbb{Z}_4^{\beta}$. This Gray map is an isometry which transforms Lee distances defined in the $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes \mathcal{C} over $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$ to Hamming distances defined in the binary codes $C = \Phi(\mathcal{C})$. If \mathcal{C} is a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code, the binary image $C = \Phi(\mathcal{C})$ is a $\mathbb{Z}_2\mathbb{Z}_4$ -linear code of length $n = \alpha + 2\beta$ and type $(\alpha, \beta; \gamma, \delta; \kappa)$.

The rank, kernel and dimension of the kernel are defined for binary codes and they are specially useful for binary non-linear codes. The rank of a binary code C, r = rank(C), is simply the dimension of $\langle C \rangle$, which is the linear span of the codewords of C. The kernel of a binary code C, K(C), is the set of vectors that leave C invariant under translation, i.e. $K(C) = \{x \in \mathbb{Z}_2^n \mid C + x = C\}$. If C contains the all-zero vector, then K(C) is a binary linear subcode of C. We show that for binary codes which are $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes, we can also define the kernel using the corresponding $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes. In this case, in order to compute the kernel K(C) of a $\mathbb{Z}_2\mathbb{Z}_4$ -linear code C is much easier if we consider the corresponding $\mathbb{Z}_2\mathbb{Z}_4$ -additive code $\mathcal{C} = \Phi^{-1}(C)$ and we compute $\mathcal{K}(\mathcal{C}) = \Phi^{-1}(K(C))$ using a generator matrix of \mathcal{C} . We also prove that if C is a $\mathbb{Z}_2\mathbb{Z}_4$ -linear code, then K(C) and $\langle C \rangle$ are also $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes. Moreover, since $K(C) \subseteq C \subseteq \langle C \rangle$ and C can be written as the union of cosets of K(C), we also have that, equivalently, $\mathcal{K}(\mathcal{C}) \subseteq \mathcal{C} \subseteq \mathcal{S}_{\mathcal{C}}$, where $\mathcal{S}_{\mathcal{C}} = \Phi^{-1}(\langle C \rangle)$, and \mathcal{C} can be written as cosets of $\mathcal{K}(\mathcal{C})$.

Using combinatorial enumeration techniques, we establish lower and upper bounds for the possible values of these parameters. We also give the construction of a $\mathbb{Z}_2\mathbb{Z}_4$ -linear code with rank r (resp. kernel dimension k) for each feasible value r (resp. k). Finally, we establish the bounds on the rank, once the dimension of the kernel is fixed, and we give the construction of a $\mathbb{Z}_2\mathbb{Z}_4$ -linear code with rank r and kernel dimension k for each possible pair (r, k).

MSC2000: 94B25, 94B40.

Keywords: $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes, $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes, rank, kernel.