Pairs of Rank and Kernel Dimension for $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Codes

C. Fernández-Córdoba
Universitat Autònoma de Barcelona
cristina.fernandez@autonoma.edu

(joint work with J. Pujol and M. Villanueva)
Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code, which is a subgroup of $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$. The code \mathcal{C} is isomorphic to $\mathbb{Z}_{2}^{\gamma} \times \mathbb{Z}_{4}^{\delta}$. Let \mathcal{C}_{b} be the subcode of \mathcal{C} which contains all order two codewords and κ the dimension of the punctured code of \mathcal{C}_{b} by deleting the \mathbb{Z}_{4} coordinates. The $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code \mathcal{C} is of type ($\alpha, \beta ; \gamma, \delta ; \kappa$), the length is $\alpha+\beta$ and the number of codewords is $2^{\gamma+2 \delta}$.

We will take an extension $\Phi: \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta} \longrightarrow \mathbb{Z}_{2}^{n}$, for $n=\alpha+2 \beta$, of the usual Gray map, $\phi: \mathbb{Z}_{4} \longrightarrow \mathbb{Z}_{2}^{2}$ where $\phi(0)=(0,0), \phi(1)=(0,1), \phi(2)=(1,1)$ and $\phi(3)=(1,0)$, given by $\Phi(x, y)=\left(x, \phi\left(y_{1}\right), \ldots, \phi\left(y_{\beta}\right)\right)$, for any $x \in \mathbb{Z}_{2}^{\alpha}$ and any $y=\left(y_{1}, \ldots, y_{\beta}\right) \in \mathbb{Z}_{4}^{\beta}$. This Gray map is an isometry which transforms Lee distances defined in the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes \mathcal{C} over $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ to Hamming distances defined in the binary codes $C=\Phi(\mathcal{C})$. If \mathcal{C} is a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code, the binary image $C=\Phi(\mathcal{C})$ is a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code of length $n=\alpha+2 \beta$ and type $(\alpha, \beta ; \gamma, \delta ; \kappa)$.

The rank, kernel and dimension of the kernel are defined for binary codes and they are specially useful for binary non-linear codes. The rank of a binary code $C, r=\operatorname{rank}(C)$, is simply the dimension of $\langle C\rangle$, which is the linear span of the codewords of C. The kernel of a binary code $C, K(C)$, is the set of vectors that leave C invariant under translation, i.e. $K(C)=\left\{x \in \mathbb{Z}_{2}^{n} \mid C+x=\right.$ $C\}$. If C contains the all-zero vector, then $K(C)$ is a binary linear subcode of C. We show that for binary codes which are $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes, we can also define the kernel using the corresponding $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes. In this case, in order to compute the kernel $K(C)$ of a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code C is much easier if we consider the corresponding $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code $\mathcal{C}=\Phi^{-1}(C)$ and we compute $\mathcal{K}(\mathcal{C})=\Phi^{-1}(K(C))$ using a generator matrix of \mathcal{C}. We also prove that if C is a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code, then $K(C)$ and $\langle C\rangle$ are also $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes. Moreover, since $K(C) \subseteq C \subseteq\langle C\rangle$ and C can be written as the union of cosets of $K(C)$, we also have that, equivalently, $\mathcal{K}(\mathcal{C}) \subseteq \mathcal{C} \subseteq \mathcal{S}_{\mathcal{C}}$, where $\mathcal{S}_{\mathcal{C}}=\Phi^{-1}(\langle C\rangle)$, and \mathcal{C} can be written as cosets of $\mathcal{K}(\mathcal{C})$.

Using combinatorial enumeration techniques, we establish lower and upper bounds for the possible values of these parameters. We also give the construction of a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code with rank r (resp. kernel dimension k) for each feasible value r (resp. k). Finally, we establish the bounds on the rank, once the dimension of the kernel is fixed, and we give the construction of a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code with rank r and kernel dimension k for each possible pair (r, k).

MSC2000: 94B25, 94B40.
Keywords: $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes, $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes, rank, kernel.

