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Abstract: A DNA molecule with freely fluctuating ends undergoes a sharp thermal denaturation transition upon
heating. However, in circular DNA chains and some experimental setups that manipulate single DNA

molecules, the total number of turns (linking number) is constant at all times. The consequences of this

additional topological invariant on the melting behavior are nontrivial. Below, we investigate the melting
characteristics of a homogeneous DNA where the linking number along the melting curve is preserved

by supercoil formation in duplex portions. We obtain the mass fraction and the number of loops and

supercoils below and above the melting temperature. We also argue that a macroscopic loop appears at
Tc and calculate its size as a function of temperature.
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1. Introduction

The two strands of a B-DNA molecule unbind upon heating in water when the entropic free energy gain due

to unhybridized single-strand DNA overweighs the enthalpic contribution of hydrogen bonding by duplex forma-

tion [1]. Thermal denaturation temperature increases with (and has been used as an experimental probe for) the

fraction of GC to AT content [2]. Mechanical denaturation [3–5] has been proposed as a tool for sequencing [6].

Theoretical models of DNA denaturation which employ the entropy-enthalpy interplay as the driving mechanism

of the phase transition date back to ’60s, to works by Fisher [7], Poland, and Scheraga [8]. It was already observed
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by then, that the sharpness of the transition depends on the subleading logarithmic correction to the entropy

which is dominated by the contribution from flexible, denatured regions (loops). The precise scaling form of the

entropy for self-avoiding polymer chains with given connective topology was calculated later by Duplantier [9]

and adopted to the DNA melting problem relatively recently [10] by Kafri et al.. They observed that the melting

process of a homogeneous DNA (i.e., with a binding energy that is uniform beyond some microscopic scale) is

a first-order phase transition. In fact, experiments on long DNA molecules display multiple sharp denaturation

steps corresponding to the unbinding of regions with different AT/GC content.

These findings apply to DNA molecules with free ends, in which a loop formed by dehybridizing a sequence of base

pairs bears no consequence on the rest of the molecule. Things change if the ends are rotationally constrained

(e.g., attached to a surface) or covalently bonded to each other, forming a circle. These examples comprise a new

physical setup where DNA’s thermal denaturation should be investigated. The novel ingredient is the introduction

of the winding or the linking number (LK), as a new topological invariant. An immediate consequence of fixing

LK is the lack a complete denaturation due to the entanglement of the two strands. However, as we discuss

below, this fact does not rule out the presence of a true melting transition at a finite temperature. In fact, the

new melting scenario turns out to be richer than the original Poland-Scheraga (PS) model [8]. Finally note that,

the problem is not a purely academic exercise. Circular DNAs are ubiquitous not only in nature [2] (all bacteria

have them), but also in labs where they are constantly used for DNA replication in PCR machines; while DNA

chains with rotationally constrained ends are frequently used in single-molecule experiments [11].

In Section 2, we describe how one can generalize the PS model in order to construct a fixed-LK ensemble. Section

3 investigates the melting behavior with emphasis on the macroscopic loop created above the critical temperature.

We conclude with a summary of our results and future prospects.

2. A DNA ensemble with fixed linking number

The Poland-Scheraga model [8] considers a homogeneous DNA, where each unit on a given strand is allowed to

bind to a unique complementary unit in the opposite strand, with some binding energy ε < 0. Duplex regions are

assumed infinitely stiff, therefore have negligible contribution to the polymer’s entropy. At nonzero temperatures,

a finite fraction of the complementary units is expected to be unbound. A successive sequence of such pairs forms

a loop, i.e., a denatured segment. Due to a roughly 10-fold smaller persistence length, these single-stranded DNA

loops are entropically favorable. The statistical weight of a loop formed by l successive units is given by

Ω(l) = A
sl

lc

where c is a universal exponent determined by geometric considerations [9] and A and s are phenomenological

constants. For a freely fluctuating DNA one finds c > 2 which yields a first-order denaturation transition [10].

The model above should be extended when the linking number is fixed. If one assumes that the loops fluctuate

freely, the winding number of one DNA single-strand around the other in a loop of length l should be zero on
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average, with an rms value ∼ l1/2 [12]. Therefore we assume that, the turns previously residing on the loops are

transfered to the remaining bound portions of the DNA. The Boltzmann factor for a circular DNA chain with

total length L and a single loop of length l now has the form

Ω(l)Zb(L− l, l)

where the unit length is set to the pitch of the DNA and Zb(L− l, l) refers to the partition sum for a bound DNA

of length L− l with l extra turns.

In order to proceed, we need to introduce a physical mechanism through which the extra turns are accommodated

in a DNA duplex. In the limit when the distance between the two strands is negligible relative to the DNA length,

a well-known theorem [13, 13]: LK = Tw + Wr relates the linking number to the twisting and bending degrees

of freedom. Tw and Wr are called twist and writhe, respectively, which are defined as follows: Let ~r(s) be the

position vector along the centerline parametrised by s, ~t(s) = d~r/ds be the corresponding tangent vector and û(s)

be the unit vector pointing from one strand to the other (perpendicular to ~t). Then,

Tw =

∮
ds

2π
~t(s) · ~u(s)× d~u(s)/ds

Wr =

∮
ds ds′

4π
~t(s)× ~t(s′) · (~r(s)− ~r(s′))/|~r(s)− ~r(s′)|3

The twist accounts for the helicity of the DNA duplex. For a straight DNA chain (closed at infinity) Tw =

LK0 ≡ 2πL/λ, where λ is the helical pitch. The writhe quantifies the part of the linking number absorbed by

the excursions of the backbone. The fraction and the energetic cost of the extra turns transferred from the loops

and residing in twist and writhe are determined by the twist and bending moduli, respectively.

The melting behavior in the limit of infinite bending stiffness where the duplex regions remain rigid (as assumed

in the PS model) has been investigated in Refs.[14, 15], and for c > 2 it was found that the transition becomes

continuous [14]. A discussion of this extreme is postponed to the end of the paper, since available numerical

evidence points to the plausibility of the opposite extreme. For example, Ref.[16] argues that the longer a circular

DNA is, the higher is the fraction of LK that is absorbed by the writhe. Therefore, we here choose to relax the

assumption of rigid DNA duplexes and allow them to accommodate a finite configurational entropy, while keeping

the pitch λ uniform and at its native value (i.e., no overtwist). An analytically trackable model that allows entropy

in bound DNA regions was recently proposed [17] and shown by us to display a continuous denaturation transition

for c > 2, in which the singularity shifts to progressively higher derivatives of the free energy as c→ 2+ [18]. Below

we review this model and present further numerical analysis on the statistics of denatured loops and supercoils,

with an emphasis on loop condensation which yields a macro-size loop above the melting temperature.

For convenience we assume that, a DNA duplex with an extra linking number forms supercoils with a fixed pitch

(e.g., consider tight supercoils where the pitch is determined by matching the grooves of the two facing duplexes).

The linking number absorbed by such a supercoil is given by its length upto some proportionality constant which
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we set to unity. The partition function for a bound DNA duplex of length Lb and an excess LK of k residing in

supercoils can then be expressed as

Zb(Lb, k) =
∑

n=1,2,...

′∑
l1,l2,...

′∑
k1,k2,...

∏
i

ωli
∏
j

νkj (1)

where ω and ν are the Boltzmann factors for a unit length of DNA duplex outside and inside a supercoil, the inner

sums with a (′) are subject to constraints
∑
i(li + ki) = Lb and

∑
i ki = k, and n counts the pairs of alternating

supercoils and unsupercoiled duplex regions. Introducing the loops as well, the canonical partition for the whole

DNA is given by

Z(L, k) =
∑

n=0,1,2,...

′∑
l0,l1,...

′∑
λ1,λ2,...

′∑
k0,k1,...

Zb(l0, k0)

n∏
i=1

Ω(λi)Zb(li, ki) (2)

where λi are the length of denatured loops, n is the number of loops, and (′) refers to the restrictions
∑
i(li+λi) = L

and
∑
i(ki − λi) = k. We assume that the end segments (with lengths l0 and ln) are bound. It is convenient to

switch ensembles and work with the grand sum

Q(z, µ) =
∑
L,k

Z(L, k)zLµk (3)

Q(z, µ) can be expressed diagrammatically as below after the DNA configurations over which the sum is performed

are grouped according to the number of loops they contain:

Q(z, µ) = [−̇−] + [−̇−©−̇−] + [−̇−©−̇−©−̇−] + · · ·

=
−̇−

1−©−̇−
≡ Ṽ (z, µ)

1− U(zµ)Ṽ (z, µ)
. (4)

Above, Ṽ (z, µ) (−̇−) refers to the grand sum for a bound DNA duplex decorated with an arbitrary number of

supercoils, and U(zµ) (©) is the similar sum for a denatured loop. Using Eq.(1), −̇− itself can be arranged into

a series involving terms with increasing number of supercoils. Below are the corresponding diagrams where “−”

and “|” represent bound segments and supercoils, respectively:

Ṽ (z, µ) = [−̇−] = [ ] + [⊥] + [⊥⊥] + [⊥⊥⊥] + · · ·

=
−

1− x ≡
V (z)

1−W (z/µ)V (z)
(5)

The functions V (x), W (x), U(x) can be calculated explicitly as:

V (z) =
ωz

1− ωz
W (x) = B

x

1− νx

U(x) =
∞∑
n=1

A
(sx)n

nc
= AΦc(sx) (6)
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where Φc(x) is the polylog function and B is another phenomenological constant associated with the energetic

cost of initiating a supercoil. Substituting in Eq.(4), we obtain

Q(z, µ) =

[
− 1 +

1

ωz
−B νz

µ− νz −AΦc(szµ)

]−1

(7)

The total DNA length is given by L = ∂ logQ/∂ log z, while the (excess) linking number is fixed by the condition

∂ logQ/∂ logµ = k. For a DNA chain with no extra turns, k = 0 at all temperatures. Also note that, ν = 0 gives

the PS model and µ = 1 yields an extension with supercoils but no constraint on LK. Below, we present numerical

data for the number and mass fraction of loops and supercoil, supporting the analytical results in Ref.[18].

2.1. Melting and loop condensation

Using the standart machinary of equilibrium statistical mechanics, we observe that the thermodynamics limit

reached by setting z to the smallest singularity of Q given explicitly by Eq.(4). When szµ < 1 (i.e. for low

temperatures) z and µ can therefore be obtained using

Q(z, µ)−1 = 0 (8)

∂ log(Q)/∂ logµ = 0 ⇒ ∂(Q−1)/∂µ = 0. (9)

where Q−1 is given by Eq.(7). For c > 2, a phase transition arises from the nonanalytic behavior observed when

the solution to Eqs.(8,9) coincides with the tip of the branch cut for Φc(szµ) at

szµ = 1 . (10)

Beyond this point, Eqs.(8,9) together with Eq.(10) overdetermine z and µ. After a detailed analysis, one finds

that when T > Tc Eq.(9) acquires a correction due to the appearance of a loop of macroscopic dimensions [18]

and is modified as below:

∂ log(Q−1)/∂ logµ|szµ=1 = Aa0 . (11)

where a0/ζc is precisely the contribution of the macroscopic loop to the average loop size and it is an increasing

function of temperature as shown below. In contrast, the average size of microscopic loops increases with tem-

perature only for T < Tc and remains constant at the value ζc−1/ζc for T > Tc (this follows from the expression

for U(x) in Eq.(6).)

Below we calculate the fraction of DNA base pairs in denatured loops (ml) and supercoils (ms), as well as the

number of loops (nl) and supercoils (ns), normalized by the length L of the DNA in the limit L → ∞. These
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Figure 1. (a) The mass fraction of denatured DNA (the order parameter for melting) vs reduced temperature for several values
of c. The lower branches are for the microscopic loops only. (b) Temperature derivatives of the order parameter are
shown in order to deduce the order of the phase transition for each c value. The vertical axis is scaled arbitrarily for
better visibility. (c) The number of denatured loops scaled by the DNA length. The number of loops first increases and
then decreases as a function of temperature, with a precursor peak below Tc for c < 3. (d) The number of supercoils
scaled by the DNA length. A singular behavior at Tc similar to (b) is found in (c) and (d) as well. Horizontal axes in
all graphs is the reduced temperature (T − Tc)/Tc.

quantities can be expressed as follows:

ml = −∂ log z/∂ log s , ms = −∂ log z/∂ log ν

nl = −∂ log z/∂ logA , ns = −∂ log z/∂ logB

(12)

where z is obtained using Eqs.(8,9) for T ≤ Tc and Eqs.(8,10) for T ≥ Tc. A plot for each of the densities above is

given in Fig.1 for several values of c. The loop fraction ml and its partitioning into contributions from microscopic

loops and the macroscopic loop above Tc (with the fraction a0(T ) : ζc−1) is given in Fig.1a. The temperature

derivatives of the order parameter are shown in Fig.1b. It is evident that the transition becomes smoother with

decreasing c. The discontinuity at the singular point shifts from the first derivative of ml (c = 3.5) to the second
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(c = 2.7) and the third (c = 2.3) as c gets smaller, in agreement with Ref.[18] where the order of the transition

was derived analytically. On the other hand, the macroscopic loop grows continuously from zero but with a finite

slope at Tc for all c > 2. Interestingly, the mass fraction in microscopic loops displays a cusp at Tc and decreases

above it. The mass fraction residing in supercoils is equal to that in the loops (not shown) by LK conservation.

Figs.1c,1d show the number of loops and supercoils. While the supercoil number increases monotonously around

the melting temperature, the loop number has a more complex dependence on temperature and c, due to the

entropic adventage of merging microscopic loops. For c > 3, the loop number behaves similar to the mass

fraction in microscopic loops. It increases for T < Tc and declines steadily for T > Tc, with a cusp at Tc.

For c < 3, a precursor peak below Tc indicates that loop merger rate catches up with the increase in ml even

before a macroscopic loop appears, so that the number of microscopic loops starts diminishing below Tc. This is

understandable considering the form of Ω(l). The entropic adventage of having few, big loops is larger for smaller

c and eventually wins against the positional entropy of having several small loops, as the loop mass density

increases with temperature.

3. Conclusion

Thermodynamics of DNA melting with a fixed linking number is qualitatively different than that understood

by the standart Poland-Scheraga model. When supercoiling in duplex regions is induced by denatured loops,

we derived the mass fraction and the number of denatured loops and supercoils in the thermodynamic limit.

We showed that a macroscopic loops appears at the melting temperature and grows steadily with temperature

above it. Our preliminary calculations (to be reported elsewhere) suggest that this feature is not specific to the

supercoiling mechanism, and also applies to the case when one considers overtwisting of the DNA duplexes as

the means for LK conservation. Implications of a fixed LK on the melting dynamics and whether a macroscopic

loop (through merger of microscopic loops) is dynamically accessible are interesting questions to be investigated

in the future.

This work has been supported by the Scientific and Technological Research Council of Turkey (TUBITAK)

through Grant TBAG-110T618, and by the Israel Science Foundation (ISF).
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